Extracellular potassium dependence of the Na+-K+-ATPase in cardiac myocytes: isoform specificity and effect of phospholemman.

نویسندگان

  • Fei Han
  • Amy L Tucker
  • Jerry B Lingrel
  • Sanda Despa
  • Donald M Bers
چکیده

Cardiac Na(+)-K(+)-ATPase (NKA) regulates intracellular Na(+), which in turn affects intracellular Ca(2+) and contractility via the Na(+)/Ca(2+) exchanger. Extracellular K(+) concentration ([K(+)]) is a central regulator of NKA activity. Phospholemman (PLM) has recently been recognized as a critical regulator of NKA in the heart. PLM reduces the intracellular Na(+) affinity of NKA, an effect relieved by PLM phosphorylation. Here we tested whether the NKA alpha(1)- vs. alpha(2)- isoforms have different external K(+) sensitivity and whether PLM and PKA activation affects the NKA affinity for K(+) in mouse cardiac myocytes. We measured the external [K(+)] dependence of the pump current generated by the ouabain-resistant NKA isoform in myocytes from wild-type (WT) mice (i.e., current due to NKA-alpha(1)) and mice in which the NKA isoforms have swapped ouabain affinities (alpha(1) is ouabain sensitive and alpha(2) is ouabain resistant) to assess current due to NKA-alpha(2). We found that NKA-alpha(1) has a higher affinity for external K(+) than NKA-alpha(2) [half-maximal pump activation (K(0.5)) = 1.5 +/- 0.1 vs. 2.9 +/- 0.3 mM]. The apparent external K(+) affinity of NKA was significantly lower in myocytes from WT vs. PLM-knockout mice (K(0.5) = 2.0 +/- 0.2 vs. 1.05 +/- 0.08 mM). However, PKA activation by isoproterenol (1 microM) did not alter the K(0.5) of NKA for external K(+) in WT myocytes. We conclude that 1) NKA-alpha(1) has higher affinity for K(+) than NKA-alpha(2) in cardiac myocytes, 2) PLM decreases the apparent external K(+) affinity of NKA, and 3) phosphorylation of PLM at the cytosolic domain does not alter apparent extracellular K(+) affinity of NKA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypertrophy, increased ejection fraction, and reduced Na-K-ATPase activity in phospholemman-deficient mice.

Phospholemman (FXYD1), a 72-amino acid transmembrane protein abundantly expressed in the heart and skeletal muscle, is a major substrate for phosphorylation in the cardiomyocyte sarcolemma. Biochemical, cellular, and electrophysiological studies have suggested a number of possible roles for this protein, including ion channel modulator, taurine-release channel, Na(+)/Ca(2+) exchanger modulator,...

متن کامل

Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in postinfarction myocytes.

Messenger RNA levels of phospholemman (PLM), a member of the FXYD family of small single-span membrane proteins with putative ion-transport regulatory properties, were increased in postmyocardial infarction (MI) rat myocytes. We tested the hypothesis that the previously observed reduction in Na+-K+-ATPase activity in MI rat myocytes was due to PLM overexpression. In rat hearts harvested 3 and 7...

متن کامل

Phospholemman and the cardiac sodium pump: protein kinase C, take a bow.

In excitable tissues, the activity of the plasmalemmal sodium/potassium ATPase (Na/K pump) is vital for the maintenance of normal electrical activity and ion gradients. In cardiac muscle, the transsarcolemmal sodium (Na) gradient established by the Na/K activity is essential not only for generating the rapid upstroke of the action potential but also for driving a number of ion exchange and tran...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+ -K+ -ATPase.

Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 297 3  شماره 

صفحات  -

تاریخ انتشار 2009